Journal of Organometallic Chemistry, 125 (1977) 71–77 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

REACTION OF PENTACARBONYL-MANGANESE(—I) AND -RHENIUM(—I) WITH METAL CARBONYL HALIDE DERIVATIVES

DAVID L. MORSE and MARK S. WRIGHTON *

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (U.S.A.)

(Received June 25th, 1976)

Summary

Studies are reported related to the reaction of $M(CO)_5^-$ (M = Mn, Re) with $XM(CO)_3L$, $XM(CO)_5$, and $XRe(CO)_3(pyridine)_2$ (X = Cl, Br, I; M = Mn, Re; L = 2,2'-bipyridine, 1,10-phenanthroline, 1,2-bis(diphenylphosphino)ethane, 2,2'-biquinoline, 4,7-diphenyl-1,10-phenanthroline, *o*-phenylenebis(dimethylarsine), and *cis*-1,2-bis(diphenylphosphino)ethylene) which may yield metal-metal bonded complexes. Neither $XM(CO)_5$ nor $XRe(CO)_3(pyridine)_2$ react at 25°C, and for $XM(CO)_3L$ only those complexes which are easily reduced (L = 2,2'-bipyridine, 1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, and 2,2'-biquinoline) readily yield products of the formula $M_2(CO)_8L$. The data suggest that the metal-metal bond formation is not via a simple nucleophilic attack mechanism but likely involves prior electron transfer to generate $XM(CO)_3L^{\overline{*}}$.

Synthesis of metal—metal bonded complexes by reaction of a metal carbonyl anion with a metal carbonyl halide is an accepted procedure [1], and we employed [2] such a route in preparing $\text{Re}_2(\text{CO})_8(1,10\text{-phenanthroline})$ (reaction 1). Our interest was aroused in this reaction class when we were unable to prepare $\text{Re}_2(\text{CO})_8(\text{pyridine})_2$ by reaction of $\text{Re}(\text{CO})_5$ —with $\text{ClRe}(\text{CO})_3(\text{pyridine})_2$.

 $\operatorname{Re}(\operatorname{CO})_{5}^{-} + \operatorname{ClRe}(\operatorname{CO})_{3}(1,10\text{-phenanthroline}) \rightarrow \operatorname{Cl}^{-} + (\operatorname{OC})_{5}\operatorname{Re}-\operatorname{Re}(\operatorname{CO})_{3}(1,10\text{-})_{5}$

phenanthroline)

It is well established that metal carbonyl anions can behave as straight-forward nucleophiles in substitution reactions of Group IV halides [3]. Additionally, metal carbonyl anions are capable of behaving as one-electron reducing agents in such circumstances [4]. In this paper we provide evidence that reaction 1 oc-

(1)

Fellow of the Alfred P. Sloan Foundation, 1974—1976; recipient of a Dreyfus Teacher-Scholar Grant, 1975—1980, and author to whom correspondence should be addressed.

curs via an electron transfer mechanism and not by simple associative nucleophilic displacement of the halide. Such a mechanism has precedence from the work of Dessy and Weissman [5].

Results and discussion

a. Reaction of $M(CO)_{\overline{2}}$ with $XM(CO)_{3}L$. Our main results are for the reaction of $Re(CO)_{\overline{5}}$ with $XRe(CO)_{3}L$. These will be amplified with some information for the Mn analogues below. For certain $XRe(CO)_3L$ complexes we find that reaction at 25° C with Re(CO); efficiently and rapidly yields metal—metal bonded $\operatorname{Re}_{2}(\operatorname{CO})_{\mathrm{s}}L$. In other cases we have found no reaction even upon heating the mixture. In particular, the comparison of the behavior of fac-ClRe(CO)3- $(pyridine)_2$ (unreactive) with fac-ClRe(CO)₃(2,2'-bipyridine) (reactive) is striking. The fac-ClRe(CO)₃(pyridine)₂ can be quantitatively recovered after refluxing it in THF solutions of excess $Re(CO)_{5}^{-}$ for several hours, while even at 25°C one quantitatively generates $Re_2(CO)_8(2,2'$ -bipyridine) when $ClRe(CO)_3(2,2'$ bipyridine) and $Re(CO)_{\overline{5}}$ are mixed. A comparison of the relative rates of reactive XRe(CO)₁L complexes and a list of non-reactive ones are given in Table 1. Representative spectral changes accompanying reaction of Re(CO)₅ with $XM(CO)_{3}L$ are shown in Fig. 1, and plots of initial optical density change as a function of reaction time are given in Fig. 2. We note additionally that $Re(CO)_{5}$ and Mn(CO)₅ react with BrMn(CO)₃(1,10-phenanthroline) to yield (OC)₅ ReMn- $(CO)_3(1,10-phenanthroline)$ and $Mn_2(CO)_8(1,10-phenanthroline)$, respectively. However, we fail to get reaction of $CIRe(CO)_3(1,10-phenanthroline)$ and Mn(CO)₅.

b. Reduction of $XM(CO)_3L$. The difference in behavior of $CIRe(CO)_3(pyridine)_2$

Metal carbonyl halide	Initia) rela- tive	Initial Product [expected product] rela- tive rate b 1.0 Re ₂ (CO) ₈ (2,2'-bipyridine)	
	rate ⁰		
CIRe(CO) ₃ (2,2'-bipyridine)	1.0		
ClRe(CO) ₃ (2,2'-biquinoline)	2.6	Re2(CO)s(2,2'-biquinoline)	
ClRe(CO) ₃ (4,7-diphenyl-1,10-phenanthroline)	2.7	Re2(CO)a(4.7-diphenyl-1,10-phenanthroline)	
CIRe(CO) ₃ (1,10-phenanthroline)	3.2	Re2 (CO)s (1,10-phenanthroline)	
BrRe(CO)3(1,10-phenanthroline)	3.2	Re2(CO)8(1,10-phenanthroline)	
IRe(CO) ₃ (1,10-phenanthroline)	2.4	Re2(CO)a(1,10-phenanthroline)	
BrMn(CO) ₃ (1.10-phenanthroline)	Reacts C	(OC) ₅ ReMn(CO) ₃ (1,10-phenanthroline)	
ClRe(CO) ₃ (pyridine) ₂	8	[Re2(CO)g(pyridine))]	
CIRe(CO)3(diars) d	#	[Re ₂ (CO) ₈ (diars)]	
CIRe(CO)3(diphos)	2	[Rey(CO)g(diphos)]	
CIRe(CO) ₃ (2-phos) ^f	E	[Reo(CO)s(2-phos)]	
CIRe(CO)5		[Re2(CO)10]	

RELATIVE REACTIVITI OF METAL CARBONIL HALIDES WITH RECOVE

^a Reaction in dry, deoxygenated THF at 25°C. The metal carbonyl halide concentration was $4.3 \times 10^{-4} M$, and NaRe(CO)₅ was $5 \times 10^{-5} M$. ^b Rates relative to CIRe(CO)₃(2,2 -bipyridine). Rate = 1.0 corresponds to initial rate of $3.7 \times 10^{-6} M \min^{-1}$. This corresponds to a reaction half-time of ~1 h. ^c Relative rate not measured. ³ diars = o-phenylenebis(dimethylarsine), ³ diphos = 1,2-bis(diphenylphosphino)ethane. ² -phos = cis-1,2-bis(diphenylphosphino)ethylene. ⁵ No reaction.

TABLE 1

Fig. 1. Low energy visible electronic spectral changes accompanying reaction of $5 \times 10^{-3} M \text{ Re(CO)}_5$ with 4.3 × 10⁻⁴ M ClRe(CO)₃(2,2'-biquinoline) in deoxygenated, dry THF at 298 K. The cell path length is 1.0 cm. The product is Re₂(CO)₈(2,2'-biquinoline); λ_{max} 660 nm (ϵ 6200 mol⁻¹ l cm⁻¹).

and species like $ClRe(CO)_3(2,2'$ -bipyridine) convince us that a mechanism other than nucleophilic substitution of the halide by the $M(CO)_{5}$ must be responsible for the net reaction of $XM(CO)_3L$ and $M(CO)_5$. It is possible that the key step in the reaction is in fact the reduction of $XM(CO)_3L$ by $M(CO)_5$. To determine the energetic feasibility of this possibility we measured the reduction $E_{1/2}$ (vs. SCE) values for pertinent substances, Table 2. The data in Table 2 show that the XRe(CO)₃L complexes which are most easily reduced are just the ones that react with $Re(CO)_{5}$ to give the $Re_{2}(CO)_{8}L$ products. The non-reactive complexes, ClRe(CO)₃(pyridine)₂, ClRe(CO)₃(diars), and ClRe(CO)₃(2-phos), are all more difficult to reduce than $Re_2(CO)_{10}$ while the reactive complexes are more easily reduced. These data suggest that Re(CO)5 is a strong enough reducing agent to reduce the reactive XM(CO)₃L complexes. Some ambiguity is introduced because the reduction potential for $Re_2(CO)_{10}$ may not exactly reflect the reducing power of the mononuclear $Re(CO)_5$. We do see, though, that it is easier to reduce $Mn_2(CO)_{10}$ than $Re_2(CO)_{10}$, and this correlates with the lack of observable reaction of $Mn(CO)_5$ with $CIRe(CO)_3(1, 10$ -phenanthroline).

Fig. 2. Plot of optical density at 570 nm as a function of reaction time for THF solution of $5 \times 10^{-3} M$ Re(CO)5 and $4.3 \times 10^{-4} M$ XRe(CO)3(1,10-phenanthroline) (X = Cl ($_{\odot}$); Br ($_{\odot}$); and I ($_{\odot}$)). Cell pathlength is 1.0 cm, and the final product is Re₂(CO)₈(1,10-phenanthroline). The molar absorptivity at 570 nm is 2670 mol⁻¹ 1 cm⁻¹.

c. Proposed mechanism for $M_2(CO)_8L$ formation. The energetic feasibility of reaction 2 does not by itself prove that it is at all important in the overall reac-

 $\operatorname{Re}(\operatorname{CO})_{5}^{-} + \operatorname{ClRe}(\operatorname{CO})_{3}(1,10\text{-phenanthroline}) \rightarrow [\operatorname{Re}(\operatorname{CO})_{5} + \operatorname{ClRe}(\operatorname{CO})_{3}(1,10\text{-phenanthroline})^{-}]$ (2)

tion indicated in reaction 1. However, the lack of reaction of $ClRe(CO)_3(pyridine)_2$ and $Re(CO)_5$, even at elevated temperatures, suggests that simple nucleophilic displacement of Cl^- cannot account for the chemistry in reaction 1. We thus offer

TABLE 2 REDUCTION POTENTIALS FOR PERTINENT MOLECULES

Compound	$E_{1/2}$ vs. SCE(V) ^{<i>a</i>}		
CIRe(CO) ₃ (1,10-phenanthroline)	-1.20		
IRe(CO) ₃ (1,10-phenanthroline)	-1.03		
CIRe(CO) ₃ (2,2'-bipyridine)	-1.46		
CIRe(CO) ₃ (pyridine) ₂	-2.04		
CIRe(CO) ₃ (diars)	2.42		
CIRe(CO) ₃ (2-phos)	-2.10		
Re2(CO)10	-1.73 b		
Mn ₂ (CO) ₁₀	-1.06 b		
1,10-Phenanthroline	-2.12 ^c		
2,2'-Bipyridine	-2.24 ^c		
Pyridine	-2.81 C	-	
2,2'-Biquinoline	-1.82 °	• -	

³ DME solution, Ar-purged, 0.1 M[n-Bu4N]ClO4 supporting electrolyte at 25°C. ⁹ These are the most recent values in propylene carbonate with 0.05 M[Et4N]Br [10]. ⁶ In 0.1 M[n-Bu4N]I/DMF solution [11].

reaction 2 as a logical first step in the mechanism of reaction 1.

Subsequent formation of the final product may occur by concerted formation of a Re—Re bond and loss of Cl⁻ or by discrete loss of Cl⁻ followed by Re—Re bond formation. In any event, any mechanism involving free Re(CO)₅ or Re(CO)₃(1,10phenanthroline) 17-electron radicals can be ruled out, since Re₂(CO)₈(1,10-phenanthroline) formation is not accompanied by formation of Re₂(CO)₁₀ or Re₂(CO)₆-(1,10-phenanthroline)₂. The Re₂(CO)₁₀ and Re₂(CO)₆(1,10-phenanthroline) are known products [2] from the coupling of Re(CO)₅ and Re(CO)₃(1,10-phenanthroline) radicals, respectively.

Other than the correlation of reactivity with ease of reduction of the $XM(CO)_3L$ species, we have no evidence for the suggested pathway in reaction 2. We do, however, have ample precedence for our proposal from work of Dessy and Weissman [5]. Also, the lability of the halide in the one-electron reduced $XM(CO)_3L$ species is consistent with the fact that reduction of $XM(CO)_5$ yields X^- and $M(CO)_5$ in a two-electron process [6]. Likewise, preliminary results in our laboratory show facile loss of halide from $XM(CO)_3L$ upon Na/Hg or electrochemical reduction of $XM(CO)_3L$ which yields X^- and $M(CO)_3L^-$. We have not succeeded in isolating or observing the one-electron reduced species $XM(CO)_3L^-$.

Experimental section

Materials. $M_2(CO)_{10}$ (M = Mn, Re) and XM(CO)₅ (X = Cl, Br for M = Re, and X = Br for M = Mn) were all obtained from Pressure Chemical Co. All ligands used are commercially available. The IRe(CO)₅ was prepared by UV-irradiation of Re₂(CO)₁₀ in N₂-purged solution of I₂ in isooctane followed by chromatography on alumina for purification [7]. All derivatives of XM(CO)₅ were prepared by heating isooctane solutions of XM(CO)₅ in the presence of the ligand followed by chromatography and recrystallization from CH₂Cl₂ by addition of n-pentane [8]. All compounds were identified by their infrared spectrum in the CO stretching region: for XM(CO)₃L bands near 2020, 1915, 1890 cm⁻¹ are found. The infrared stretching frequencies for most of these complexes are given in ref. 8. The THF solutions of M(CO)₅ were prepared by Na/Hg reduction of M₂(CO)₁₀ [9].

The THF solvent used for preparation and reaction of $M(CO)_{5}$ was distilled from Na/benzophenone under Ar. The DME electrochemical solvent was distilled from LiAlH₄ under Ar. The polarographic quality [n-Bu₄N]ClO₄ was obtained from Matheson.

Synthesis and characterization of $M_2(CO)_8L$ complexes. The metal-metal bonded complexes resulting from the interaction of $M(CO)_5^-$ and $XM(CO)_3L$ (L = 2,2'-bipyridine, 1,10-phenanthroline, 2,2'-biquinoline, and 4,7-diphenyl-1,10-phenanthroline) all have very similar properties. We outline the synthesis $and characterization of <math>\text{Re}_2(CO)_8(1,10-\text{phenanthroline})$, since it is representative.

Synthesis of $\text{Re}_2(\text{CO})_8(1,10\text{-phenanthroline})$ was by airless addition (in the dark) of a tetrahydrofuran solution of $\text{NaRe}(\text{CO})_5$ [9] to a deoxygenated ClRe-(CO)₃(1,10-phenanthroline) solution. The net displacement of Cl⁻ by $\text{Re}(\text{CO})_5^-$ occurs rapidly at 25°C to yield a highly colored solution containing the desired complex and NaCl precipitate. The colored solution was decanted and reduced in volume by rotary evaporation. The $\text{Re}_2(\text{CO})_8(1,10\text{-phenanthroline})$ was purified by column chromatography on alumina, recrystallization from CH_2Cl_2 by addition of n-pentane, and sublimation, it is a red-purple solid which gives a satisfactory elementary analysis: Found: C, 30.70, H, 1.03, N, 3.74. $C_{20}H_8N_2O_8Re$ calcd.: C, 30.9; H, 1.03; N, 3.60%. The m.p. is 252–254°C (corrected), and the complex has strong IR bands in the CO stretching region at 2075, 1993, 1900, and 1885 cm⁻¹ in CHCl₃. The lowest electronic absorption band position is very solvent sensitive and falls at 516 nm (ϵ 7900 mol⁻¹ l cm⁻¹) in THF. In CH₂Cl₂ the electronic absorption bands are at 527 (0.21); 350 (sh) (6.27); 290 (sh) (0.64) and 267 nm (0.93) where the numbers in parentheses are the relative absorbance. The band at 267 nm is the characteristic 1,10-phenanthroline intraligand absorption with an absorbance consistent with one 1,10-phenanthroline unit per molecule.

The other $M_2(CO)_{sL}$ complexes were prepared using a similar procedure and were characterized spectroscopically in the IR and UV-vis. Additionally, since the relative rates were measured in THF, the position and intensity of the lowest band was measured in THF: $\text{Re}_2(\text{CO})_8(2,2'$ -biquinoline), λ_{max} 660 nm (ϵ 6200 mol⁻¹ l cm⁻¹); Re₂(CO)₈(4,7-diphenyl-1,10-phenanthroline), λ_{max} 532 nm (ϵ 9900 mol⁻¹ l cm⁻¹). These complexes were prepared from reaction of Re(CO)₅ with $ClRe(CO)_{3}L$. Infrared spectral features for these $Re_{2}(CO)_{8}L$ complexes in CHCl₃ include five strong CO stretching absorptions analogous to the prototype Re2(CO)8(1,10-phenanthroline): Re2(CO)8(2,2'-biquinoline), 2076, 1987, 1970, 1895, 1885 cm⁻¹; Re₂(CO)₈(4,7-diphenyl-1,10-phenanthroline), 2073, 1991, 1961, 1896, 1885 cm⁻¹; Re₂(CO)₈(2,2'-bipyridine), 2074, 1990, 1960, 1897, 1885 cm⁻¹. Electronic absorption spectra were recorded in CH_2Cl_2 and band maxima and relative absorbance in parentheses are given: $Re_2(CO)_8(4,7-diphenyl-1,10-phe$ nanthroline), 538 (0.15); 350 (sh) (0.20), 280 nm (0.66); Re₂(CO)₈(2,2'-biguinoline), 668 (0.10), 460 (0.12), 368 (0.52); 353 (0.48), 295 (sh) (0.47), 268 nm (0.98).

Reaction of Re(CO)₅⁻ with BrMn(CO)₃(1,10-phenanthroline) yields Re(CO)₅-Mn(CO)₃(1,10-phenanthroline) with a lowest absorption maximum at 563 nm (ϵ 4950 mol⁻¹ l cm⁻¹) in THF. The complex exhibits five strong CO stretching absorptions in CHCl₃ at 2076, 1977, 1966, 1895, 1882 cm⁻¹, and electronic absorptions in CH₂Cl₂ at 570 (0.19); 425 (sh) (0.16); 340 (sh) (0.25); 290 (sh) (0.45) and 268 nm (0.86), where the numbers in parentheses represent relative absorbance.

For compounds of the type $M_2(CO)_{\delta}L$, where elemental analyses were not obtained, the purity was established by demonstrating that near-UV irradiation in the presence of CCl₄ quantitatively yields the corresponding mononuclear $M(CO)_5$ Cl and ClM(CO)₃L complexes as compared to authentic samples. The photochemistry procedures are described in ref. 2.

Relative rate studies. Relative rates for reaction of $\text{Re}(\text{CO})_5$ with $\text{XM}(\text{CO})_3\text{L}$ were determined by adding a THF solution of $\text{Re}(\text{CO})_5$ to a THF solution of $\text{XM}(\text{CO})_3\text{L}$ under Ar. The initial $\text{Re}(\text{CO})_5$ and $\text{XM}(\text{CO})_3\text{L}$ concentrations in the reacting solution were 5×10^{-3} M and 4.3×10^{-4} M respectively. Product formation was monitored as a function of time by measuring the visible spectral changes accompanying the generation of $\text{Re}(\text{CO})_5$ — $\text{M}(\text{CO})_3\text{L}$, cf. Fig. 1 and 2. The reactions were followed to completion, and the plots of optical density of product against time were linear to >20% conversion. "No reaction" entries in Table 1 have been made for systems where $\text{XM}(\text{CO})_3\text{L}$, $\text{XM}(\text{CO})_3\text{L}$; could be recovered unchanged from solutions containing $M(CO)_{5}^{-}$.

Polarography. DC polarography was run using a PAR174A Polarographic Analyzer with a two compartment cell. A dropping Hg working electrode was used with a Hg counter electrode and a saturated calomel electrode (SCE) was the reference electrode. The cell was purged with Ar prior to use and remained under Ar for the polarographic studies. The complexes were run at $\sim 2 \times 10^{-3} M$ and the supporting electrolyte was a 0.1 M [n-Bu₄N]ClO₄ in DME.

Acknowledgment

We thank the National Science Foundation for support of this research.

References

- 1 I. Wender and P. Pino (Eds), Organic Synthesis via Metal Carbonyls, Vol. I, Insterscience, New York, 1968, p. 259.
- 2 D.L. Morse and M.S. Wrighton, J. Amer. Chem. Soc., 98 (1976) 3931.
- 3 R.B. King, Accounts Chem. Res., 3 (1970) 417.
- 4 R.E. Dessy and R.L. Pohl, J. Amer. Chem. Soc., 90 (1968) 2005.
- 5 R.E. Dessy and P.M. Weissman, J. Amer. Chem. Soc., 88 (1966) 5124.
- 6 L.I. Denisovich, A.A. Ioganson, S.P. Gubin, N.E. Kolobova and K.N. Anisimov, Izv. Akad. Nauk. Ser. Khim., (1969) 258.
- 7 M.S. Wrighton and D.S. Ginley, J. Amer. Chem. Soc., 97 (1975) 2065.
- 8 (a) M.S. Wrighton and D.L. Morse, J. Amer. Chem. Soc., 96 (1974) 998; (b) F. Zingales, M. Graziani,
 F. Faraone and U. Belluco, Inorg. Chim. Acta, 1 (1967) 172; (c) F. Zingales, U. Sartorelli and A.
 Travati, Inorg. Chem., 6 (1967) 1246.
- 9 W. Hieber and G. Wagner, Z. Naturforsch. B, 12 (1957) 178; 13 (1958) 339 and cf. also ref. 3.
- 10 P. Lemoine, A. Giraudeau and M. Gross, Electrochim. Acta, 21 (1976) 1 and ref. cited therein.
- 11 B.J. Tabner and J.R. Yandle, J. Chem. Soc. A, (1968) 381.